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ABSTRACT 

A property of ergodic finite-alphabet processes, called the blowing-up prop- 

erty, is shown to imply exponential rates of convergence for frequencies and 

entropy, which in turn imply a positive-divergence property. Furthermore, 

processes with the blowing-up property are finitely determined and the 

finitely determined property plus exponential rates of convergence for fre- 

quencies and for entropy implies blowing-up. It is also shown that finitary 

codings of i.i.d, processes have the blowing-up property. 

1. I n t r o d u c t i o n  

Our original motivation for the research reported in this paper was to study 

properties of an ergodic process Q that would guarantee that if P is ergodic and 

P ¢ Q then the limiting divergence rate D(PIIQ) must be positive. (Definitions 

will be given later.) It was fairly easy to show that i.i.d, processes and aperiodic 

Markov chains have such a positive-divergence property. We were soon led, how- 

ever, to the realization that some condition on Q is needed, for the second author 

was able to show that  not every ergodic process has the positive-divergence prop- 

erty; in fact, even requiring that  the process be a stationary coding of an i.i.d. 
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process is not enough. Counterexamples for the positive-divergence property and 

other divergence-rate questions are discussed in a separate paper, [9]. 

In this paper we show that if Q has exponential rates of convergence for fre- 

quencies and entropy then it has a stronger form of the positive-divergence prop- 

erty, namely, if D(PHQ ) is close enough to 0 then P will be close to Q in both 

distribution and entropy (Theorem 1). As is well known, however, closeness in 

distribution and entropy forces closeness in the d-metric, provided Q is a finitely 

determined process in the sense of Ornstein, [5]. Thus our Theorem 1 leads to 

the problem of characterizing those finitely determined processes that have ex- 

ponential rates of convergence for frequencies and entropy. We were surprised 

to discover that a property, called the b lowing-up  p r o p e r t y ,  which had ear- 

lier been shown to hold for i.i.d, processes, [3, Lemma 5.4] and [4], is in fact 

equivalent to the three conditions of having exponential rates of convergence for 

frequencies, of having exponential rates of convergence for entropy, and of having 

the finitely determined property (Theorem 2). Part  of the proof of this result 

was supplied to us by Ornstein and Weiss. 

Finally, we turn to the question of finding classes that have the blowing-up 

property, that  is, extending the i.i.d, results of [3, 4]. We were able to show that  

a class of processes, which we call the finitary processes, have the blowing-up 

property (Theorem 3). Such processes are stationary codings of i.i.d, processes 

in which the window-width function is a finite-valued random variable. The 

finitary class is known to include the aperiodic Markov chains, [2, 11]. 

Notation, definitions, and precise statements of our results will be given in the 

next section; proofs will be given in Section 3. 

ACKNOWLEDGEMENT: The authors wish to thank Imre Csisz~r for fruitful con- 

versations on the topics in this paper, and to Don Ornstein and Ben Weiss for 

their contribution of the proof that blowing-up implies finitely determined. 

2. De f in i t i ons  and  s t a t e m e n t s  o f  resul ts  

For our purposes a process is a shift-invariant Borel probability measure on the 

space A °° of sequences x = {xn}, xl E A, drawn from a finite set A, which 

is called the alphabet. Thus, in particular, for us "process" means "stationary 

process;" we will, in fact, be mostly concerned with ergodic processes. In some 

cases, it will be convenient to think of a process as a shift-invariant measure on 

the space A z of doubly-infinite sequences. 
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Letters, such as P,  Q, or R, will denote processes, while # and u will denote 

other probability measures. The shift T = TA is the transformation defined by 

(Tx)n = Xn+l, x E Am. The sequence am, am+l . . . .  , an will be denoted by a,~, 

the set of such a~  will be denoted by A~, and A n will denote A~. The process 

P defines a measure Pk on A k by the formula 

Pk(a~) = P({x :  xi = ai, 1 < i < k}). 

If k is understood we use P instead of Pk- Note that a process is i.i.d, if and 

only if each Pk is the product measure defined by P1. 

Let # and p be probability measures on the finite set B. The divergence of # 

with respect to p is defined by 

D(p[lu) = ~ #(b) log #(b) 

b u(b)' 

where base 2 logarithms are used here and elsewhere in this paper. The divergence 

plays a role in coding theory; for example D(PkIIQk) is, essentially, the Pk- 

expected additional cost in using a k-block code that is optimal for Qk, rather 

than the Pk-optimal code. For processes P and Q we define an upper and a lower 

divergence-rate as follows. 

Definition 1: The u p p e r  and lower  d i v e r g e n c e  r a t e s  of P with respect to Q 

are defined respectively by 

D*(PllQ) = l imsup 1-D(Pn[[Qn) 
n n 

and 

D,  (PlIQ) = lira inf 1 D ( p n  IIQ~)- 
n n 

For i.i.d. 

D(PIIIQ~). 
whether observed data  comes from the null distribution P1 or the alternative 

distribution Q1. The divergence measures the exponential rate of convergence of 

the type II error, given a fixed type I error, that  is, 

D(P[[Q) = -  lim 1 k - ~  k log min Qk(B).  
B c A  ~ 

P k ( B ) > l - e  

| 

processes, the upper and lower rates are the same and are equal to 

In this case the divergence-rate is an important concept in testing 
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The divergence-rate also plays an important role in large deviations theory. The 

upper and lower rates are equal for ergodic Markov chains where again the 

divergence-rate is important in hypothesis testing and large deviations theory. 

It is not hard to construct nonergodic processes for which the upper and lower 

rates are not equal, but such pathology can also happen for ergodic processes, 

[9]. 

The divergence D(Pk]lQk) can be equal to 0 only if the two measures Pk and 

Qk agree on all k-sequences. The divergence-rate for processes involves a limit 

and hence the situation is more complicated; in fact, the upper rate D*(PIIQ) 

can be 0 without P and Q being the same, even if P and Q are both ergodic, [9]. 

Let us say that an ergodic process Q has the pos i t ive-d ivergence  p r o p e r t y  if 

D.(PIIQ) > 0 for any ergodic process P which is not equal to Q. 

Our first goal will be to show that a large class of ergodic processes Q do have 

the positive-divergence property. We will show that processes with exponential 

rates of convergence for frequencies have the positive-divergence property; in fact, 

for such processes the lower divergence-rate D.(P]IQ ) has continuity properties 

at P = Q. Exponential rates of convergence for entropy yield comparable results 

for entropy. The rate of convergence concepts will now be defined after which we 

state the results. 

The variational distance is defined by 

IP~ - Qkl = ~. ,  IPk(ak) - Qk(akl)l, 
a~ 

and the entropy-rate is defined by 

H(P)  = lim 1H(pn) ,  
n n 

where H(P,~) = - ~ a ,  i P(a~)logP(a~).  The empir ica l  d i s t r i b u t i o n  of  k- 

blocks/~x~,k in x~ is the distribution on A k defined by the (relative) frequencies 

of overlapping k-blocks, that is, 

/~x~,,k(alk) = [{i • [m,n -- k + 1]: x~ +k-1 = ak}l 
n - k - m + 2  

where I" I denotes cardinality. 

The exponential rate concepts we will use are defined as follows. 
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Definition 2: An ergodic process Q has the e x p o n e n t i a l  r a t e  o f  c o n v e r g e n c e  

p r o p e r t y  for  f r e q u e n c i e s  if given k and e > 0 t'here is a 5 > 0 and an N such 

that  

Q ( { x ~ : l A x ~ , k - Q k [ > e } ~  <_2 - ~ ,  n>_N. | 
\ /  

Definition 3: An ergodic process Q has the e x p o n e n t i a l  r a t e  of  c o n v e r g e n c e  

p r o p e r t y  for  e n t r o p y  if given e > 0 there is a 6 > 0 and an N such that  

Q ( { x ~ : [ - l o g Q ( x ? ) - H ( Q ) l > e } ) < _ 2  -n~, n>_N. 1 

Our first theorem can now be stated. 

THEOREM 1: Let Q be an ergodic process. 

(i) / f  Q has the exponential rate of convergence property for frequencies, then 

given e > 0 and a positive integer k there is a 6 > 0 such that i fP  is ergodic 

and D,(PlJQ ) < 6 then IRk - Qkl < c. 

(ii) If  Q has the exponential rate of convergence property for entropy, then 

given ~ > 0, there is a 6 > 0 such that  if P is an ergodic process and 

D,(PIIQ) < ~ then IH(P)  - H(Q)I < e. 

Note, in particular, that  processes with exponential rates of convergence for 

frequencies have the positive-divergence property. 

It is well known that  i.i.d, processes and ergodic Markov chains have the expo- 

nential rate of convergence property for entropy and for frequencies. Closeness in 

distribution and entropy is related to the concept of finitely determined process, 

a concept first introduced by Ornstein to characterize those processes that  are 

stationary codings of i.i.d, processes, [5]. A process Q is f in i te ly  d e t e r m i n e d  if 

given c > 0 there is a 5 > 0 and a positive integer k such that  if P is any ergodic 

process such that  ]Pk - Q k l  < 5 and I H ( P ) -  H(Q)I < 5 then d(P,Q) < e. Here 

d(P, Q) denotes the d-distance between the processes P and Q, defined in the 

next paragraph. 

The distance between two n-sequences is the average Hamming distance, de- 

fined by 

dn(a 1 , b 1 ) = d(ai, bi), 
i---=1 
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where d(a, b) is 0 or 1, depending on whether a = b or a ~ b. 

between two measures, # and v, on A n is defined by 

Isr. J. Math .  

The dn-distance 

dn(#,v) = inf E~(dn(x~,y~)), 

where Jn (#, v) denotes the set of all measures ), on A n × A n that  have # and 

v as marginals, and Ex denotes expectation with respect to A. The d-distance 

between two processes P and Q with alphabet A is defined by 

d(P, Q) = l im&(Pn,  Qn), 

a limit that  can be shown to exist, at least for stationary processes. The reader 

is referred to [5] for a discussion of the d-metric. 

Returning to our statement of results, we note that  the following corollary to 

Theorem 1 is immediate. 

COROLLARY 1: If  Q is a finitely determined process and Q has exponential rates 

of convergence for both frequencies and entropy then given e > 0 there is a 5 > 0 

such that if P is ergodic and D.(P[[Q) < 5 then d(P,Q) < e. 

We next introduce the blow-up idea. If C C A n then [C]~ will denote the 

e-neighborhood about C, that is 

[C]c = {by: dn(a~, b~) < e, for some a~ E C}.  

The set [C]~ will also be called the e-blow-up of C. 

This leads us to our key concept, the blowing-up property. 

Definition 4: An ergodic process Q has the b lowing-up  p r o p e r t y  if given e > 0 

there is a 5 > 0 and an N such that if n > N and C _C A n then 

(1)  Q(c) > 2 > 1 - e. m 

As noted in our introduction it has been shown that i.i.d, processes have the 

blowing-up property, [3, 4]. Our second principal result is the following charac- 

terization of processes with the blowing-up property. 



Vol. 86, 1 9 9 4  POSITIVE-DIVERGENCE PROPERTY 337 

THEOREM 2: A process Q has the blowing-up property if  and only i f  it is finitely 

determined and has the exponential rate of convergence property for both fre- 

quencies and entropy. 

As we will show in our proof of this theorem, the blowing-up property is es- 

sentially just a stronger version of a property called "extremality", a property 

that is known to be equivalent to the finitely determined property, [8, Lemma 1]. 

The proof that blowing-up implies extremality was supplied to us by Ornstein 

and Weiss. 

The finitely determined processes are precisely the stationary codings of the 

i.i.d, processes. A process Q with alphabet A is a s t a t i o n a r y  co d in g  of a 

process P with alphabet B if there is a measurable function F: B z ~ A z,  

called the encoder, such that  TAF(X) = F(TBx),  x 6 B z and Q = P T  -1. 

Stationary codings of i.i.d, processes are known by many different names, such 

as B-processes, very weak Bernoulli processes, finitely determined processes, and 

almost block independent processes; each of which corresponds to a different 

characterization of such processes, [5, 10]. 

In the light of Theorem 2 it would be nice to have conditions on the encoder F 

which guarantee that the image of an i.i.d, process has the blowing-up property. 

As a step in this direction, we can show that finitary codings of i.i.d, processes 

have the blowing-up property. Finitary codings are defined as follows. Suppose 

Q has alphabet A, P has alphabet B, and Q is a stationary coding of P with 

encoder F.  The function f :  B z ~ A defined by f ( x )  = (F(x))o is called the 

sliding-window encoder. The encoder F can be reconstructed from f by noting 

that y = F(x)  if and only if Yn = f (Tnx) .  The coding is said to be f i n i t a ry  

if there is a nonnegative integer-valued measurable function w(x), called the 

window-width function, such that 

w(x) -~(~) 
: f(x) : a.e. 

Definition 5: Q is a f i n i t a ry  process if it is a finitary coding of an i.i.d, process. 
| 

Our principal result for finitary coding is the following. 

THEOREM 3: Finitary coding preserves the blowing-up property. In particular, 

a finitary process has the blowing-up property. 
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Many processes are known to be finitary codings of i.i.d, processes, including 

the following. 

1. The aperiodic Markov chains, [2, 11]. 

2. The m-dependent processes, [12]. 

3. The indecomposable finite-state processes. 

The third item, the indecomposable finite-state processes, is included for they 

are just the finite codings of aperiodic Markov chains, that is, finitary codings 

in which the window width w(x) is uniformly bounded. In summary, our re- 

sults imply that all processes listed above have the blowing-up property, the 

exponential-rates property, and the positive-divergence property. 

The blowing-up property and the finitary property are, of course, much stron- 

ger than the exponential-rates property. Thus, for example, the following pro- 

cesse have the exponential-rate properties and hence the positive-divergence prop- 

erty, but are not finitely determined, hence have neither the finitary property nor 

the blowing-up property. 

1. The periodic, irreducible Markov chains. 

2. The periodic, ergodic finite-state processes. 

3. The rotation processes defined by irrational rotations of the circle together 

with partitions of the circle into intervals. 

The following chain of implications connecting the finitary property (FP), the 

blowing-up property (BUP), the exponential rates properties (ERP), and the 

positive-divergence property (PDP), will be established in this paper. 

FP ~ BUP =~ ERP ~ PDP. 

The reverse implication ERP :=~ BUP does not hold (since periodic chains have 

ERP but not BUP). We suspect that the other reverse implications, BUP =v FP, 

and, PDP =¢, ERP, also fail to hold, although we have no proofs. 

An example of a finitely determined process that does not have the positive- 

divergence property is constructed in [9]; in particular, there are finitely deter- 

mined processes that do not have the blowing-up property. Thus blowing-up is 

a stronger property than finitely determined. A connection between blowing-up 

and other properties that are stronger than finitely determined, such as weak 

Bernoulli, seems unlikely, although this has not been explored. 
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3 .1  EXPONENTIAL RATES. The basic theorem connecting exponential rates of 

convergence for frequencies and entropy with the positive-divergence property is 

stated as follows. 

THEOREM 1 : Let Q be an ergodic process. 

(i) / f  Q has the exponential rate of convergence property for frequencies, then 

given e > 0 and a positive integer k there is a 5 > 0 such that i f  P is ergodic 

and D.(PIIQ) < 6 then [Pk - Qkl < e. 

(ii) ff  Q has the exponential rate of convergence property for entropy, then 

given e > O, there is a 6 > 0 such that i f  P is an ergodic process and 

D,(PIIQ) < ~ then IH(P)  - H(Q)I < e. 

Our proof will make use of a simple inequality, [7, Theorem 2.4.2], stated here 

as the following lemma. 

LEMMA 1: Let # and u be probability measures on the finite set A. Then 

E # ( a )  log #(a) < D(#llu ) + 21og2. 
o v ( a )  - 

Proof." Let A-  denote the set of a E A such that log(p(a)/u(a)) < 0. The 

convexity of the logarithm function then gives 

E #(a) log #(a) = #(A-)  E #(a) log p(a) 
aea- u(a) # ( A - )  #(a) 

a E A -  

1 <_ #(A-) log [#(A-)J  

1 
_< #(A-)  log #(A-)  -< log2, 

from which the lemma easily follows. | 

Proof  of Theorem 1: Let a be a positive number to be specified later and suppose 

D(Pn]IQ,~) < a2/2. If n is large enough then the bound of Lemma 1 together 

with the Markov inequality implies that there is a set B c_ A ~ such that 

(a) P,~(B) > 1 - a. 

X n (b) < Q (1) -< x7 e B. 
If k is fixed and n is large enough then the ergodic and entropy theorems 

applied to P tell us that there is a set/3 C_ B such that 
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(c) P n ( B )  > 1 - 2 . .  

(d) I/~i,,k - Pkl <: a, x~ E/~. 

(e) 2 -(H(P)+a)n ~_ P(x~) ~_ 2 -(H(p)-a)n, x~ E [~. 

If Q has the exponential rate of convergence property for frequencies then 

for some ~/ > 0 and all n sufficiently large. Note, however, that conditions (b) 

and (c) imply that  Q,~(/~) > (1 - 2a)2 -~n. Thus, if a is small enough and n large 

enough then there will be an x~ E/~ such that I/~,~,,k - Qkl -< a. Since (d) also 

holds for this same x~ we conclude that IPk - Qkl _< 2a. This establishes (i). 

If Q has the exponential rate of convergence property for entropy, then, as 

in the preceding argument, we can assume that n is sufficiently large and a 

sufficiently small that there will be an x~ C B such that 

2 -(H(Q)+a)n <_ Q(x?) < 2 -(H(Q)-a)n. 

This combined with (b) and (e) then yields IH(P)-H(Q)I <_ 4a which establishes 

(ii), completing the proof of Theorem 1. | 

3.2 BLOWING-UP AND EXTREMALITY. In this subsection we establish the con- 

nection between blowing-up, exponential rates of convergence, and finitely deter- 

mined, which we summarize as the following theorem. 

THEOREM 2: A process Q has the blowing-up property if and only if it is finitely 

determined and has the exponential rate of convergence property for frequencies 

and for entropy. 

To improve readability we break the proof into three parts, showing first that 

blowing-up implies exponential rates, then that blowing-up implies finitely deter- 

mined, and finally that finitely determined plus exponential rates implies blowing- 

up. 

3.2. I Blowing-up implies exponential rates. Suppose Q has the blowing-up prop- 

erty. We first prove that  Q has the exponential rate of convergence property for 

frequencies. The idea of the proof is that if the set of sequences with bad fre- 

quencies does not have exponentially small measure then it can be blown up by 

a small amount to get a set of large measure. If the amount of blow-up is small 

enough, however, then frequencies won't change much and hence we would have 
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a set of large measure all of whose members have bad frequencies, contradicting 

the ergodic theorem. 

The details of the frequency proof will now be given. Define B(n, k, e) = 
- d ( x  n " n ~  {xT: I/X~i~,k Qa] >_ e}. Choose 7 = e/2k and note that  n~ 1,Yl) < • implies 

that  I/X~7,k - Ayi,,kl < e/2. In particular, note that  

(2) [B(n, k, c)]. r C B(n, k, e/2). 

Next use the blowing-up property to choose 5 and N so that  if n > N, C C A n, 

and Q(C) _> 2 -~'~ then Q([C]~) > 1 -e .  Thus i fn  _> N and Qn(B(n, k, e)) > 2 -~n 
then we would have Qn([B(n, k,e)].r) > 1 - e which combines with (2) to force 

Qn(B(n, k,e/2)) > 1 - c, which cannot be true for all large n since the ergodic 

theorem guarantees that  lima Qn(B(n, k, e/2)) = 0 for each k. 

Next we turn to the proof that  blowing-up implies an exponential rate of 

convergence for entropy. One part  of this is easy, for there cannot be too many 

sequences whose measure is too large, hence a small blow-up of such a set cannot 

possibly produce enough sequences to cover a large fraction of the measure. To 

make this precise, define 

X n 2 - n ( H - e )  B*(n,e)= {xT:Qn(1) > }, 

and note that  [B*(n, e)[ _< 2 n(H-e). Thus we can choose a > 0 so that  

I[B*(n,e)],~[ < 2 n(H-e/2), 

and hence lima Qn([B*(n, e)]~) = 0. In particular, if 

Q(C) > 2 - ~  ~ Q([C]~) > 1 - a ,  n > N, 

then we must have Q(B*(n, e)) < 2 -~n, n > N. 
An exponential bound for the measure of the set 

B.(n,e) = {x•: Q~(x?) <_ 2 -n(~+~)} 

of sequences of too-small probability is a bit trickier to obtain and will make use 

of the exponential rate of convergence of frequencies. The idea is that  when n is 

sufficiently large then, except for a set of exponentially small probability, most 

of x~ will be covered by k-blocks whose measure is about 2 -kH. This gives an 
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exponential bound on the number of such x~, which in turn means that  it is 

exponentially very unlikely that  such an x~ can have probability much smaller 

than 2 -nil. The details of this argument follow. 

First use the Shannon-McMillan theorem to choose k so large that 

Qk(B,(k,e/4)) < a, 

where (~ will be specified in a moment. For n > N put 

Tn = {x?: A,[,k(B.(k,  e/4)) < 2a}. 

A standard argument, for example, see [6, p. 912], then shows that there is an 

a > 0 and an N such that  

(3) [Tnl _~ 2 n(H+e/2), n >_ N. 

Thus we have Qn (Tn N B.  (n, e)) < 2 -n*/2. But we have already shown that  there 

is an exponential rate of convergence for frequencies, so we can choose 5 > 0 so 

that  Qn(Tn) >_ 1 - 2 -~n. Thus 

Qn(B.(n, e)) < 2 -~n + 2 -n~/2, 

which gives the desired exponential bound. 

3.2.2 Blowing-up implies finitely determined. The key idea here is that  the 

blowing-up property is essentially just a stronger version of one form of the "ex- 

tremality" property, a property known to be equivalent to the finitely determined 

property, [8, Lemma 1]. A process Q has the e x t r e m a l i t y  p r o p e r t y  if given 

e > 0 there is an N and a ~ > 0 such that if n > N and C is any partit ion of A n 

such that Qn(C) >_ 2 -~n, C E C then, 

except for a subcollection of C of total Qn measure at most e, where Q~(-I C) is 

the conditional measure on C C A n, defined by Qn(BIC ) = Q,~(B N C)/Q~(C). 

Extremality allows the possibility that  the conditional measure Q~(-]C) may not 

be close to the unconditioned measure Q~ in tin, for some members C E C, so 

long as such "bad" sets have small total probability. The following lemma, whose 

proof was supplied to us by Ornstein and Weiss, asserts that  for processes with 

the blowing-up property, all the measures Qn(.]C) will be close to Qn in dn. Thus 

blowing-up implies extremality, which in turn implies finitely determined. 
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LEMMA 2: H Q has the blowing-up property then given e > 0 there is an N 

and a 8 > 0 such that i f  n >_ N and C c A n satisfies Q~(C) >_ 2 -~n then 

d~(Qn, Qn( . [c))  <_ ~. 

Proof: Given e > 0 let us choose 5 > 0 and N such that  if n > N and C C A ~, 

then 

(4) Q,~(C) > 2 -n~ ~ Q,([C]~) > 1 - e. 

Fix n > N and a set C C A n such that  Qn(C) :> 2 -n~/2 and note that  Qn([C]~) >_ 

1 - e. We will show that  

(5) d (Qn, Qn(.lc)) _< 2e + 2 

This, of course, will establish the lemma and hence the fact that  blowing-up 

implies finitely determined. 

Let (W, #) and (Z, v) be two nonatomic probability spaces and choose measur- 

able partitions, {W(a~): a~ E A n} of (W,/~) and {Z(a~), a~ e C} of (Z, v), such 

that  
a n #(W(aT))  = Q n ( 1 ) ,  a7 E A n, 

c c .  

The n a m e s  of w E W and z E Z are the respective sequences, w~ and z~, such 

that  w E W(w~{) and z E Z(z~{). Our goal is to show that  there is a measure 

preserving transformation ~: W ~-* Z such that  d,~(w'~, ~(w)~) < e, except for a 

set of measure at most e + 2- '~ /2 ;  this will establish (5). 

Let us say that  an invertible measure preserving mapping ~ from I~d C W 

onto 2 C Z is an e - m a t c h i n g  on  W if dn(w~{, ~(w)~) < e, except for a subset 

of lid of measure at most e#(i~V). We shall use the fact that  Qn([C]~) _> 1 - e to 

construct an e-matching ~ on a subset W 1 of W of positive measure, then show 

that  either the complement of W 1 has measure less than 2 -n~/2 or we can extend 

the e-matching to a larger set. 

The key to the construction is the fact that  if a is small enough then we can cut 

off an a-fraction of each W(a~)  for which a~ E [C]~, and assign it to a subset of 

a Z(b~) set of the same measure for which dn(a~, b~) <_ e. Since Qn([C],) >_ 1 - e  

we can therefore achieve an e-matching on an a-fraction of W. If  the set of 

sequences in C that  are not fully covered has measure at least 2 -~e then it blows 

up to a large set and we can repeat the construction on the unassigned part ,  
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removing another positive fraction and assigning it to produce an e-matching on 

a larger fraction of the space. 

Now let us fill in the details of the above argument. We will first show that  

if a is a small enough positive number then there are two collections of disjoint, 

measurable sets 

{Wl(a?): al • A m, }, {Zl(a?): a? • Am}, 

such that  the following hold. 

(a) WI(a•) is a subset of W(a'~) of measure a#(W(a~)). 
(b) Zl(a'~) has measure equal to #(WI(a'~)) and is entirely contained in some 

Z(b'~). 
(c) If a~ E [C]~ then ZI(a~)  G Z(b~), where dn(b~, a~) < e. 
(d) There is at least one b~ C C such that  Z(b~) is the union of the Z l (a~)  

that  meet it. 

Since the spaces (W, #) and (Z, u) are nonatomic while the sets A '~ and C are 

finite, we can certainly, for each a~ E [C]~, cut off an a-fraction Wl(a~) of 

W(a~) and assign it in any way we like to a subset Zl(a~) of some Z(b~) for 

which dn(b~, a~) <_ e, provided only that  a is small enough. Thus we can force 

(a), (b), and (c) to hold for a~ E [C]~. Then, making a smaller if necessary, we 

can cut off a-fractions of the remaining W(a~) and assign them however we want 

so that  (a), (b), and (c) will hold for all a~. Condition (d) can be forced to hold 

merely by scaling each set by the same same suitably chosen factor ), > 1. 

The mapping ~ is defined on the union W 1 = UWl(a~)  by mapping each 

W 1 (a~) in a measure preserving way onto the corresponding Zl(a~). Note that  

is an e-matching on W 1, by property (c) and the fact that  Qn([C]~) _> 1 - e. 

This completes the first stage of the construction. 

Next define C1 to be the set of all b~ E C that  were not fully covered at the 

first stage, that  is, Z(b~) is not the union of the Zl(a~) that  are contained in it. 

Property (d) guarantees that  C1 is strictly smaller than C. If Q,~(C1) >_ 2 -~n 
then Qn([C1],) _> 1 - e, by (4), and we replicate the preceding construction to 

obtain a subset W 2 of W - W 1 of positive measure h i ,  and an e-matching ~ of 

W 2 onto a subset of Z - Z 1 such that  the subset C2 C C1 of sequences that  are 

still not fully covered by the range of ~ has cardinality smaller than C1. Thus 

we can keep going, as long as the set of sequences that  are not fully covered has 

measure at least 2 -~n. Since we can force the cardinality of the non-fully covered 
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sequences to shrink, the process will stop after some finite number of steps, say 

k, at which point we will have an e-matching on a subset W 1 U W 2 U -. .  U W k 

such that the set Ck of b~ E Ck-1 that are not fully covered satisfies 

Q,~(Ck) < 2 - ~ .  

Since we started with Q , (C)  > 2 -~n/2, we therefore must have 

Q n ( W  1 u w  2 u . - . u W  k) > _ 1 - 2  -6~/2. 

The mapping ~ can be extended in an arbitrary measure preserving way to the 

complement of UiW i. Thus we will have d,~(~(w)~, w~)) <<_ e, except on a set of 

measure at most c + 2 -6~/2, which completes the proof of the desired result (5). 

I 

Remark 1: As the above proof shows, blowing-up actually implies the apparently 

stronger property that  given • > 0 there is a ~ > 0 and an N such that if n _> N 

and C C_ A '~ then 

Q(C) >_ 2 -n6 ~ dn(Q,Q([C]~) < e. 

3.2.3 Finitely determined plus exponential rates implies blowing-up. We first 

note a simple connection between the blow-up of a set and the d,-distance con- 

cept. Let C C A n and let dn(x'~, C) denote the distance from x~ to C, that is, 
~t  n the minimum of dn(x 1 , Yl ), Y'~ E C. For any probability measure # on A n it is 

clear that  

E~,(dn(x'~, C)) < dn(#, #('lC)), 

so that if d , (# ,  #(.IC)) < e 2, then, by the Markov inequality, the set of x~ such 

that dn(x'~, C) > • has # measure less than e. This proves the following 

(6) d , (p ,#( . IC))  < e 2 => #([C]¢) > 1 - e .  

Assume that Q is finitely determined and has the exponential rate of conver- 

gence property for both frequencies and entropy. The finitely determined prop- 

erty implies that conditioning on subsets of A n whose members have good enough 

k-block distribution and good enough entropy will produce measures close in d,~ 

to the original measure. This result, which is the reason why finitely determined 

processes have the "extremality" property, is stated here as the following lemma. 
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LEMMA 3: Let Q be finitely determined. Given e > 0 there is a 6 > 0 and 

positive integers k and N > k such that if n > N and C C A n is such that 
^ 

(a) IAxr,k - Qkl < 6, xr • c .  
(b) [~H(Qn(.[C) - H(Q)[ _ 6, 

then dn(Qn, Qn(.Ic)) < ~. 

Let 5, k and N be chosen using the lemma. For n _> N let 

^ n (7) = {xT: IAxr,k - Q k l  --- 6} U {x?: IlogQn(xl)+nHI > n6/2}, 

that is, the set of n-sequences that have bad frequencies of k-blocks or too-large 

or too-small probability. Use the exponential rate property to choose a • (0, 6) 

so that  Qn(13n) <_ 2 -`~n, n > N. 

Suppose C C A n is such that Qn(C) >_ 2 -~n, where ~/ = a/2, and put C = 

C - C N Bn. If n is large enough then we have 

(i) Qn(C) > 2 -~"/2. 

(ii) ]A~;,,k - Qk[ _< 5, x 7 • C. 

(iii) 2 -'~(g+~/2) < Qn(x~) <_ 2 -n(g-~/2),  x? • C. 

A simple calculation using (i) and (iii) gives the entropy bound 

1H(Q~(.[C) H(Q) < 5. 

Thus we can apply the lemma and conclude that d~(Qn, Q~(.IC)) < e. We then 

apply the connection between d-closeness and blowing-up, namely (6), to corn- 

plete the proof that Q h a s  the 

Remark 2: Note that  for any 

Qn(Bn) < 6, where Bn is the 

blowing-up property. 

ergodic process and 6 > 0 there is an n such that  

set defined in (2). Thus if Qn(C) _> 26 then (ii) 

and (iii) will hold along with (i') Qn(C) > 6. This shows that if Q is finitely 

determined then Q must have the weak blowing-up property, a property applied 

to some information theory questions in [1]. A process Q has the weak  b lowing-  

up  p r o p e r t y  if given e > 0 and 6 > 0, there is an N such that if n _> N and 

C c C_ A n then 

(8) Q(C) >_ 5 ~ Q([C]¢) >_ 1 - e. 

It  is not hard to show that weak blowing-up is an isomorphism invariant and 

that there are processes with entropy 0 that have the weak blowing-up property. 
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3.3 FINITARY CODING AND BLOWING-UP. We turn now to the proof of our final 

result. 

THEOREM 3: Finitary coding preserves the blowing up property. In particular, 

a l]nitary process has the blowing-up property. 

Proo[: Suppose P has the blowing-up property and Q is a finitary coding of P 

with encoder F: B Z H A z, sliding-window encoder f :  B Z ~-* A, and window- 

width function w(x), x e B z.  The finitary assumption means that w(x) has 

finite nonnegative integer values and that f ( x )  depends only on the values x w(x) 

Thus, in particular, there is a k so large that P(w(x)  > k) < ~2. For a 5 > 0 to be 

specified in the next paragraph and an integer n let C C A n satisfy Q , (C)  >_ 2 -n~ 

= B n+~ and note that and put D F-1C .  Let /9 be the projection of D onto -k+l 
g(b)  _> 2 -"~. 

Since we have assumed that P has the blowing-up property we can suppose 

that 5 is small enough and n is large enough so that if "~ = c/(2k + 1) then 

P([/~]~) > 1 - e. Next let G be the set of all Xk_k such that w(x) < k, and define 

l _ n +  k . A 
T = tx_k+l.  Ax~++,,2k+l(G ) > 1 - c}. 

The Markov inequality together with P(w(x)  > k) < e2 then implies that P(T)  >_ 

1 - c .  
~ n + k  Now consider a sequence x k+ 1 E [D]~ N T. In this sequence (1 - e)n of the 

z . n T k  sliding (2k+ 1)-blocks belong to G, and, moreover, there is a sequence x_k+ I E / )  

such that 
d { X n T k  ~.n+k 

~+2k[ _k+l,X_a+l) < 7 -- 2k + 1" 

Thus fewer than (2k + 1)Tn _< en of the (2k + 1)-blocks in x-k+l~+k can differ from 

the corresponding block in 2 ~+k In particular, there are at least (1 - 2e)n - k + l "  

(2k + 1)-blocks in _n+k that belong to G and, at the same time coincide with : c - k + l  

the corresponding block in x_k+ 1.-n+k 

Now choose y and ~ E D such that yn+a_k+l = x'~+k-4+l, and Y-k+l=~+a = ~-a+l,~"~+k 

and put z = F(y) ,  5 = F([I). The sequence 2~ belongs to C and we have 

dn(z~, 2~) _< 2e, so that z~ C [C]2¢. This proves that 

Qn([C]2¢) >_ P([D]~ ~ T) >_ 1 - 2c, 

and completes the proof of Theorem 3. | 
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